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Last time

We introduced the basic unit of quantum information: the qubit.

Quick review:

https://www.wooclap.com/QCOMP1

https://www.wooclap.com/QCOMP1


Visualizing qubit states

Consider |ψ〉 = α |0〉+ β |1〉 ∈ V2

In general α and β are complex numbers : dimR V2 = 4

Hard to visualize! Let us assume for the moment that α, β ∈ R.

Since |ψ〉 ∼ 1

||ψ||
|ψ〉, we can assume without loss of generality that α2 + β2 = 1.

Looks like a circle...



A circle ?
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Yes: the Bloch circle

-1 -0.5 0.5 1

-1

-0.5

0.5

1

|0
〉

|1
〉



The (real) Bloch representation

According to the first picture we are tempted to write:

|ψ〉 = cos θ |0〉+ sin θ |1〉 0 ≤ θ < 2π

but there is the ambiguity θ ←→ θ + π, |ψ〉 ∼ −|ψ〉.

In the second, more accurate picture, what we actually see is the point

P|ψ〉 = (cos 2θ, sin 2θ).

Thus it would have been better to write, non-ambiguously,

|ψ〉 = cos( θ2) |0〉+ sin( θ2) |1〉.



Angle between two states

In the (real) Bloch representation:|ψ〉 = cos( θ2) |0〉+ sin( θ2) |1〉,

|ϕ〉 = cos(φ2 ) |0〉+ sin(φ2 ) |1〉

we have

〈ϕ |ψ〉 = cos(φ2 ) cos( θ2) + sin(φ2 ) sin( θ2) = cos φ−θ2 .

In particular:

〈ϕ |ψ〉 = 0 ⇐⇒ φ−θ
2 = ±π

2 ⇐⇒ φ = θ ± π.

Orthogonal states lie opposite on the Bloch circle.



Towards the Bloch representation

Now for a general state 0 6= |ψ〉 ∈ V2:

|ψ〉 = α |0〉+ β |1〉, α, β ∈ C.

Without loss of generality we can assume |α|2 + |β|2 = 1 (normalized state).

Equivalent normalized states: if |ψ〉 ∼ |ϕ〉, then |ψ〉 = γ |ϕ〉 with |γ| = 1.

So: if α = A e ia, by multiplying by e−ia we can reduce to the case

α = A is real, β = B e ib, A2 + B2 = 1.



Bloch representation

|ψ〉 = A |0〉+ B e ib |1〉, A2 + B2 = 1.

From the real case we know we should write A = cos( θ2), B = sin( θ2).

We have proved:

Every qubit state is equivalent to a unique normalized state of the form

cos( θ2) |0〉+ sin( θ2) e iφ |1〉.

These correspond to points (cosφ sin θ, sinφ sin θ, cos θ) on a sphere.



The Bloch sphere B (click title for interactive model)

https://www.geogebra.org/m/gZTMpWnu


Properties of the Bloch representation

• Pairs of orthogonal states correspond to antipodal points on the Bloch sphere.

• The probability that |ψ〉 is measured as |0〉 or |1〉 can be interpreted as relative

areas on the sphere.
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Spoilers ahead: Shor’s algorithm



Quantum circuits

Quantum circuits are made up of

• quantum registers containing qubits

• quantum logic gates modifiying the state of these qubits

• classical registers containing regular bits

• measurements mapping quantum registers to classical registers

that can then be manipulated with a classical electronic circuit.



NOT gate

NOT |0〉 = |1〉

NOT |1〉 = |0〉

NOT(α |0〉+ β |1〉) = α |1〉+ β |0〉

NOT

[
α

β

]
=

[
β

α

]
NOT =

[
0 1

1 0

]



Interpretation on the Bloch sphere

Fixed points of NOT:

|0〉+ |1〉√
2

|0〉 − |1〉√
2

NOT can be thought of as a rotation of π around the x-axis

often called the Pauli X gate for this reason and written NOT, X or ⊕

Note: X 2 = I



Exercise

Geometrical interpretation of the quantum gates

Y =

[
0 −1

1 0

]
and Z =

[
1 0

0 −1

]
.



Hadamard gate

H =
X + Z√

2
=

1√
2

[
1 1

1 −1

]

Sends |0〉 to H|0〉 =
|0〉+ |1〉√

2
, |1〉 to the orthogonal state H|1〉 =

|0〉 − |1〉√
2

.

Remark: H2 = I (isn’t it?)



Phase gate P = P(θ)

P =

[
1 0

0 e iθ

]

P|0〉 = |0〉, P|1〉 = e iθ

P(α |0〉+ β |1〉) = α |0〉+ e iθ β |1〉

Remark : P(π) = Z



Universal gate U

Depends on 3 parameters θ, φ and λ:

U =

[
cos( θ2) −e iλ sin( θ2)

e iφ sin( θ2) e i(λ+φ) cos( θ2)

]

All gates encountered so far are special cases !

Remark: U is a unitary matrix (U†U = I )
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Lab 1: Single qubit measurements

Consider on IBM Q the U gate with parameters (θ, φ, λ).

1) If U|0〉 is measured, what are the probabilities of observing |0〉 and |1〉?

2) Using the parameters provided on this spreadsheet, verify that the Statevector,

Measurement probabilities and representation on the Bloch sphere correspond to

what you would expect.

3) Add a measurement to your circuit and verify that the simulated results agree

with what you would expect (”run” the circuit on ibmq qasm simulator).

4) Then, submit your circuit to a real quantum computer (don’t hold your breath)

and record the experimental probability p of observing 0 on 1024 measurements.

5) Submit a short report of your results on Teams by next class!

https://teams.microsoft.com/l/file/11A136E7-3B19-4E05-8AFB-753F325CD603?tenantId=89734289-a3cf-4052-9021-195a7bba4992&fileType=xlsx&objectUrl=https%3A%2F%2Fyncrea.sharepoint.com%2Fsites%2Fmsteams_15e5fc%2FDocuments%20partages%2FGeneral%2FMeasurement%20lab.xlsx&baseUrl=https%3A%2F%2Fyncrea.sharepoint.com%2Fsites%2Fmsteams_15e5fc&serviceName=teams&threadId=19:e0bde73ebe7e4dfcb0c58185c47d0399@thread.tacv2&groupId=8dee4113-e90d-40d8-8a68-0d3dee8df970
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